46 research outputs found

    Chemistry And Pharmacological Characterization Of Novel Nitrogen Analogues Of Amop-H-Oh (Sazetidine-A 6-[5-(Azetidin-2-Ylmethoxy)Pyridin-3-Yl]Hex-5-Yn-1- Ol) As α4β2-Nicotinic Acetylcholine Receptor-Selective Partial Agonists

    Get PDF
    In order to advance therapeutic applications of nicotinic ligands, continuing research efforts are being directed toward the identification and characterization of novel nicotinic acetylcholine receptor (nAChR) ligands that are both potent and subtype selective. Herein we report the synthesis and pharmacological evaluation of members of a new series of 3-alkoxy-5- aminopyridine derivatives that display good selectivity for the α4β2-nAChR subtype based on ligand binding and functional evaluations. The most potent ligand in this series, compound 64, showed high radioligand binding affinity and selectivity for rat α4β2-nAChR with a Ki value of 1.2 nM and 4700-fold selectivity for α4β2- over α3β4-nAChR, and ∼100-fold selectivity for functional, high-sensitivity, human α4β2-nAChR over α3β4*-nAChR. In the mouse forced swim test, compound 64 exhibited antidepressant-like effects. Structure-activity relationship (SAR) analyses suggest that the introduction of additional substituents to the amino group present on the pyridine ring of the N-demethylated analogue of compound 17 can provide potent α4β2-nAChR-selective ligands for possible use in treatment of neurological and psychiatric disorders including depression. © 2010 American Chemical Society

    Conditional expression in corticothalamic efferents reveals a developmental role for nicotinic acetylcholine receptors in modulation of passive avoidance behavior

    Get PDF
    Prenatal nicotine exposure has been linked to attention deficit hyperactivity disorder and cognitive impairment, but the sites of action for these effects of nicotine are still under investigation. High-affinity nicotinic acetylcholine receptors (nAChRs) contain the .2 subunit and modulate passive avoidance (PA) learning in mice. Using an inducible, tetracycline-regulated transgenic system, we generated lines of mice with expression of high-affinity nicotinic receptors restored in specific neuronal populations. One line of mice shows functional .2 subunit-containing nAChRs localized exclusively in corticothalamic efferents. Functional, presynaptic nAChRs are present in the thalamus of these mice as detected by nicotine-elicited rubidium efflux assays from synaptosomes. Knock-out mice lacking high-affinity nAChRs show elevated baseline PA learning, whereas normal baseline PA behavior is restored in mice with corticothalamic expression of these nAChRs. In contrast, nicotine can enhance PA learning in adult wild-type animals but not in corticothalamic-expressing transgenic mice. When these transgenic mice are treated with doxycycline in adulthood to switch off nAChR expression, baseline PA is maintained even after transgene expression is abolished. These data suggest that high-affinity nAChRs expressed on corticothalamic neurons during development are critical for baseline PA performance and provide a potential neuroanatomical substrate for changes induced by prenatal nicotine exposure leading to long-term behavioral and cognitive deficits

    Recent Developments In Novel Antidepressants Targeting α4β2-Nicotinic Acetylcholine Receptors

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients

    Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]Octanes As Selective α4β2-Nachr Ligands

    Get PDF
    We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype. Structure-activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR β2 subunit-containing nAChR subtypes (β2∗-nAChRs) over α4∗-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for α4β2-and α4β2∗-nAChRs with negligible interaction. Functional assays confirm selectivity for α4β2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15

    Identification Of Novel α4β2-Nicotinic Acetylcholine Receptor (Nachr) Agonists Based On An Isoxazole Ether Scaffold That Demonstrate Antidepressant-Like Activity

    Get PDF
    There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening toward other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested. © 2011 American Chemical Society

    Discovery Of Isoxazole Analogues Of Sazetidine-A As Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists For The Treatment Of Depression

    Get PDF
    Depression, a common neurological condition, is one of the leading causes of disability and suicide worldwide. Standard treatment, targeting monoamine transporters selective for the neurotransmitters serotonin and noradrenaline, is not able to help many patients that are poor responders. This study advances the development of sazetidine-A analogues that interact with α4β2 nicotinic acetylcholine receptors (nAChRs) as partial agonists and that possess favorable antidepressant profiles. The resulting compounds that are highly selective for the α4β2 subtype of nAChR over α3β4-nAChRs are partial agonists at the α4β2 subtype and have excellent antidepressant behavioral profiles as measured by the mouse forced swim test. Preliminary absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies for one promising ligand revealed an excellent plasma protein binding (PPB) profile, low CYP450-related metabolism, and low cardiovascular toxicity, suggesting it is a promising lead as well as a drug candidate to be advanced through the drug discovery pipeline. © 2011 American Chemical Society

    Chemistry And Behavioral Studies Identify Chiral Cyclopropanes As Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting An Antidepressant Profile

    Get PDF
    Despite their discovery in the early 20th century and intensive study over the last 20 years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity while acting as partial agonists at α4β2-nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening toward other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression. © 2011 American Chemical Society

    Hypoplastic Left Heart Syndrome Current Considerations and Expectations

    Get PDF
    In the recent era, no congenital heart defect has undergone a more dramatic change in diagnostic approach, management, and outcomes than hypoplastic left heart syndrome (HLHS). During this time, survival to the age of 5 years (including Fontan) has ranged from 50% to 69%, but current expectations are that 70% of newborns born today with HLHS may reach adulthood. Although the 3-stage treatment approach to HLHS is now well founded, there is significant variation among centers. In this white paper, we present the current state of the art in our understanding and treatment of HLHS during the stages of care: 1) pre-Stage I: fetal and neonatal assessment and management; 2) Stage I: perioperative care, interstage monitoring, and management strategies; 3) Stage II: surgeries; 4) Stage III: Fontan surgery; and 5) long-term follow-up. Issues surrounding the genetics of HLHS, developmental outcomes, and quality of life are addressed in addition to the many other considerations for caring for this group of complex patients
    corecore